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Abstract

This paper addresses the problem of recovering the lo-
cations of both mobile devices and access points from
radio signals that come in a stream manner, a problem
which we callonline co-localization, by exploiting both
labeled and unlabeled data from mobile devices and ac-
cess points. Many tracking systems function in two
phases: anoffline training phaseand anonline localiza-
tion phase. In the training phase, models are built from
a batch of data that are collected offline. Many of them
can not cope with a dynamic environment in which cali-
bration data may come sequentially. In such case, these
systems may gradually become inaccurate without a
manually costly re-calibration. To solve this problem,
we proposed anonline co-localizationmethod that can
deal with labeled and unlabeled data stream based on
semi-supervised manifold-learning techniques. Experi-
ments conducted in wireless local area networks show
that we can achieve high accuracy with less calibration
effort as compared to several previous systems. Fur-
thermore, our method can deal with online stream data
relatively faster than its two-phase counterpart.

Introduction
With the recent advance in pervasive computing and mo-
bile technology, tracking wireless devices using received-
signal-strength (RSS) has attracted intense interest in many
research communities. It is a useful task in robotics and
activity recognition. It is also a difficult task since radio
signals usually attenuate in a highly nonlinear and uncer-
tain way in a complex environment where client devices
may be moving. Existing approaches to RSS localiza-
tion fall into two main categories (Ferris, Hahnel, & Fox
2006): (1) radio propagation models (Maliganet al. 2005;
Savvides, Han, & Strivastava 2001), which rely on the
knowledge of access point locations; (2) statistical ma-
chine learning models (Nguyen, Jordan, & Sinopoli 2005;
Letchner, Fox, & LaMarca 2005; Bahl & Padmanabhan
2000), which require a large amount of costly calibration.

In general, machine-learning-based systems using RSS
values function in two phases (Panet al. 2006a): anof-
fline training phaseand anonline, localization phase. In
the offline phase, aprobabilistic modelis trained by con-
sidering the signal strength values received from the access
points at selected locations in the area of interest. These
values comprise the training data gathered from a physical
region, which are used to calibrate a probabilistic location-
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estimation system. In the online localization phase, the real-
time signal strength samples received from the access points
are used to estimate the current location based on the learned
model.

However, in many applications, access points are not de-
ployed in a static environment in which calibration and un-
calibrated data come in a stream manner. Access points
may be removed, relocated and added for better coverage
and link quality. In either case, a localization system may
gradually become inaccurate without a manually costly re-
calibration and re-run the whole training process. It is also
wasteful to discard previous computation results. A bet-
ter idea is to construct an online model where calibration
data come in stream. Previous works have been done in
online graph learning (Herbster, Pontil, & Wainer 2005;
Law & Jain 2006; Kouropteva, Okun, & Pietikainen 2005;
Jenkins & Mataric 2004). More specifically in wireless and
sensor networks, (Funiaket al. 2006) describes a similar
problem when beacon nodes are cameras. (Tayloret al.
2006) presents a framework for simultaneously localization
and mapping with ultrasonic sensors based on Baysian Fil-
ter (Foxet al. 2003). (Ferris, Fox, & Lawrence 2007) shows
WiFi SLAM using Gaussian Process model.

In this paper, we address the problem of recovering the
locations of both mobile devices and access points from
radio signals that come in a stream manner, a problem
which we callonline co-localization, by exploiting both la-
beled and unlabeled data from mobile devices and access
points. The proposed method is based on online and in-
cremental manifold-learning techniques (Law & Jain 2006;
Kouropteva, Okun, & Pietikainen 2005; Jenkins & Mataric
2004), semi-supervised techniques that can cope with la-
beled and unlabeled data that come sequentially.

We test ouronline co-localizationin a Wireless Local
Area Network (WLAN). Experiments show that we can
achieve high accuracy with less calibration effort as com-
pared to several previous systems. Furthermore, our method
can incrementally deal with data streamonline relatively
faster than its two-phase counterpart.

Related Works
Propagation-model-based approaches are widely used for
location estimation due to their simplicity and efficiency
(Letchner, Fox, & LaMarca 2005). These methods usu-
ally assume that access points arelabeled, e.g., their loca-
tions are known. They estimate the distance of the mobile
devices relative to some fixed access points based on sig-
nal strengths through models that predicts the signal prop-
agation patterns (Savvides, Han, & Strivastava 2001). Re-
searchers have also used Bayesian models to encode the sig-
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Figure 1: WLAN Test-bed

nal propagation pattern (Letchner, Fox, & LaMarca 2005;
Maligan et al. 2005) and infer the locations using Monte
Carlo methods (Thrunet al. 2001). A drawback of
propagation-model-based methods is that these models may
become inaccurate in a complex domain.

An alternative is to apply machine-learning-based algo-
rithms. With these algorithms thelabels of access points
need not be known. Instead, they usually rely on mod-
els that are trained with RSS data collected on a mobile
device and arelabeled with physical locations (Letchner,
Fox, & LaMarca 2005; Nguyen, Jordan, & Sinopoli 2005;
Ni et al. 2003; Bahl & Padmanabhan 2000). The train-
ing data are usually collected offline. These signal values
may be noisy and nonlinear due to environmental dynam-
ics. Therefore, sufficient data shall be collected to power
algorithms for approximating the signal to location mapping
functions using K-Nearest-Neighbors (Bahl & Padmanab-
han 2000), kernels (Panet al. 2005), Bayesian filters (Letch-
ner, Fox, & LaMarca 2005) and Gaussian processes (Ferris,
Hahnel, & Fox 2006). A drawback of these models is that
they may require much calibration effort.

A viable approach is to use bothlabeledandunlabeled
data. For example, Bayesian frameworks can be applied to
use bothlabeledandunlabeledaccess points (Letchner, Fox,
& LaMarca 2005). Our work differs from the above in that
we treat mobile devices and access points in a completely
symmetric manner: we use both thelabeledandunlabeled
data from mobile devices and access points to recover the
locations of both of them rather than locating the mobile
devices only. Our work is related to (Tayloret al. 2006;
Ferris, Fox, & Lawrence 2007) in the sense that we combine
the training an localization phases together into an online
and incremental model that can dynamically adopt new cal-
ibration data sequentially.

Methodology
Problem Statement
Co-localizationaddresses the problem of recovering the lo-
cations of both mobile devices and access points, by exploit-
ing both labeledandunlabeleddata from both mobile de-
vices and access points (Pan & Yang 2007).Co-localization
can be done in a traditional Two-Phase manner: anOffline
Training Phaseand anOnline Localization Phase. How-
ever, in a dynamic environment where calibration data come

Table 1: Signal Strength (unit:dBm)
AP1 AP2 AP3 AP4 AP5

tA -40 -60 -40 -70
tB -50 -60 -80
tC -40 -70
tD -80 -40 -70
tA′ -40 -70 -40 -60
tE -40 -70 -40 -80
tF -80 -80 -50
(All values are rounded for illustration)

sequentially, it will be inefficient to build the model repeat-
edly. A better idea is to adjust the current modelonline.

Consider a 2-dimensionalonline co-localizationproblem:
Assume that a user holds a mobile device and navigates
in an indoor wireless environmentC ⊆ R

2 of n access
points, which can periodically send out beacon signals. At
some timeti, the RSS values from all then access points
are measured by the mobile device to form a row vector
si = [si1 si2 . . . sin] ∈ R

n. As time elapses, these row
vectors come in a stream manner. Afterm time ticks, we
get a sequence ofm signal strength vectors form anm × n
matrix S = [s′1 s′2 . . . s′m]′, where “prime” is used to de-
note matrix transposition. Here, the locations of some access
points and the mobile devices at some timet are known or
labeled, while the rest areunlabeled.

Our objectives are stated as follows: In anonline and in-
crementalmanner, we wish to estimate them × 2 location
matrixP = [p′

1,p
′
2, . . . ,p

′
m]′ where pi = [pi1 pi2] ∈ C is

the location of the mobile device at timeti and then×2 loca-
tion matrixQ = [q′

1,q
′
2, . . . ,q

′
n]′ whereqj = [qj1 qj2] ∈ C

is the location of thej access points.
Our objectives are to determine and update the locations

of all of the remaining access points and the trajectory of the
mobile device in real-time as partially calibrated data come
sequentially. Note thatm is not a constant value. As time
elapses,m may increase from1, 2, . . ., to any number. We
want to dynamically adjust the model when observing new
data without (or with) anoffline training phase. We call this
problemonline co-localization.

Example 1 As an example, Figure 1 shows an indoor
802.11 wireless LAN environment of size about60m×50m.
It is equipped withn = 5 access points. A user with an IBM
T42 notebook that is equipped with an Intel Pro/2200BG in-
ternal wireless card walks fromA throughB, C, D, A, E to
F at timetA, tB, tC , tD, tA′ , tE , tF . Correspondingly, a to-
tal number ofm = 1, 2, . . . , 7 signal strength vectors are
incrementally extracted. The final7 × 5 matrix S is shown
in Table 1. By walking fromA to F in the hallways, we
collected500 signal strength vectors from5 access points.
Note that the blank cells denote the missing values, which
we can fill in a small default value, e.g.,−100dBm.

Our task is to dynamically update the trajectory matrix
P of the mobile device at each time when new data come
and to determine the location matrixQ of the access points
AP1, AP2, . . . , AP5 in anonlinemanner.



Domain Characteristics
There are four main characteristics about received-signal-
strengths by observing the data in Table 1:

1. Considering tworows of the data, the mobile device at
two different time may be spatially close if their pairwise
signal strengths are similar from most access points, e.g.,
the timetA andtA′ .

2. Considering twocolumnsof the data, two access points
may be spatially close if their pairwise signal strengths
are similar most of the time, e.g.,AP1 andAP4.

3. Considering asingle cellsij of the data, the mobile device
and thej access point may be spatially close to each other
at timeti if the signal is strong, e.g., the mobile device is
close toAP3 at timetD.

4. Considering twoneighbored rowsof the data, the mobile
device at two consecutive time may be spatially close if
their time interval is small by assuming that a user may
not move too fast or too irregularly. For example, the lo-
cations of the mobile device at timetA′ andtE are close
since|tA′ − tE | < ∆T .

It is not surprising that the above observations are re-
lated to the assumption of manifold-learning techniques:
When the locations of some access points and the mobile
device at some time are known, we can ground the un-
known coordinates by exploiting the geometry of the sig-
nal distribution. Manifold-based methods generally assume
that if two points are close in the intrinsic geometry of
the marginal distribution, their conditional distributions are
similar (Belkin, Niyogi, & Sindhwani 2005; Ham, Lee, &
Saul 2005), which approximately holds in our above ob-
servations and several previous works (Panet al. 2006b;
Pan & Yang 2007)

Solution I: Two-Phase Co-Localization
Offline Training Phase When the manifold assump-
tion holds, the optimal solution is give byf∗ =
arg min

f

Σl
i=1|fi − yi|

2 + γfT Lf (Ham, Lee, & Saul 2005)

where the first term measures the fitting error and the second
term poses the smoothness along the manifold andL is the
graph Laplacian (Chung 1997).

First of all, we can express the similarity within all the
collected signal vectorssi (i = 1, 2, . . . , m) by constructing
the neighborhood graph and its graph Laplacian matrixLP

(Chung 1997). The objective is to optimize:

P ∗ = argmin
P∈Rm×2

(P − YP )′JP (P − YP ) + γP P ′LP P (1)

whereP is the coordinate matrix of the mobile device to
be determined;JP = diag(δ1, δ2, . . . , δm) is an indica-
tion matrix whereδi = 1 if the coordinate of the mobile
device at timeti is given and otherwiseδi = 0; YP =
[y′

1,y
′
2, . . . ,y

′
m]′ is an m × 2 matrix supplying the cali-

bration data whereyi is the given coordinate of the mobile
device at timeti if δi = 1 and otherwise the value ofyi

can be any, e.g.,yi = [0 0]; γP controls the smoothness
of the coordinates along the manifold;LP = DP − WP

is the graph Laplacian;WP = [wij ]m×m is the weight
matrix andwij = exp(−‖si − sj‖

2/2σ2
P ) if si and sj

are neighbors along the manifold and otherwisewij = 0;
DP = diag(d1, d2, . . . , dm) anddi =

∑m
j=1

wij .
Setting the derivative of Equation (1) to zero, the optimal

solution is given by (Ham, Lee, & Saul 2005)

P ∗ = (JP + γP LP )−1JP YP (2)

We also construct the neighborhood graph for access
points in a similar way, the optimal solution is given by

Q∗ = arg min
Q∈Rn×2

(Q− YQ)′JQ(Q− YQ) + γQQ′LQQ (3)

whereLQ = DQ −WQ is the graph Laplacian,WQ is the
weight matrix andDQ is constructed fromWQ.

Furthermore, we encode the similarity between access
points and mobile devices by transforming the signal ma-
trix S = [sij ]m×n to a non-negative weight matrix
A = [aij ]m×n by a Gaussian kernelaij = exp(−|sij −
smax|2/2σ2

A) wheresmax is the maximal signal strength
detected, e.g., the signal strength around an access point
or −30dBm. From the weight matrixA, we construct the

graph LaplacianLA = DA −WA whereWA =
[

0 A

A
′

0

]

and DA =
[

D1 0

0 D2

]

. We also reformLP and LQ

to larger matrices withLB =
[

LP 0

0 0

]

and LC =
[

0 0

0 LQ

]

. Now LA, LB andLC are graph Laplacians of

the same size.LA describes the similarity between mobile
devices and access points.LB andLC express the similarity
within them respectively. Putting these together, our objec-
tive is to optimize:

R∗ = argmin
R∈R(m+n)×2

(R− Y )′J(R − Y ) + γR′LR (4)

whereR = [r′1, r2, . . . , r
′
m+n]′ = [P ′ Q′]′ is the coordi-

nate matrix of the mobile device and the access points;Y =

[Y ′
P Y ′

Q]′ supports the partial labels;J =
[

JP 0

0 JQ

]

is the

indication matrix;L = γALA + γBLB + γCLC = D −W
is the graph Laplacian. The optimal solution is given by:

R∗ = (J + γL)−1JY (5)

We can export the estimated coordinates of the mobile
device trajectoryP ∗ and access point locationsQ∗ from
R∗ = [P ∗′ Q∗′]′.

Online Localization Phase In the localization phase, the
location of a new signal strength vectorsi is predicted as
follows:

1. Find thek neighbors closest tosi in the training data
S = [s′1 s′2 . . . s′m]′. LetCi be the index set of thek near-
est neighbors. Besides, we linksi to those access points
from which we can detect the radio signal. We also linksi

to si−1 in order to pose the temporal constraint by assum-
ing that a user may not move too fast (ti − ti−1 < ∆T ).
Denote the index set for these additional links asBi.



2. Approximately, we can predict the location using a prop-
erty of harmonic functions (Zhu, Ghahramani, & Laf-
ferty 2003; Ham, Lee, & Saul 2005), which are smooth
functions on the graph such thatri is determined by the
weighted average of its neighbors. This property holds if
there is no uncertainty in the labeled locations of matrix
P during training (γ → 0).

r̃i ≈

∑

j∈Ci∪Bi
wijrj

∑

j∈Ci∪Bi
wij

(6)

Note that the abovẽri is an approximation because adding
si to the existing neighborhood graph from the train data
may slightly change the graph structure: We have linked
theith node to the node setCi; However, we have not yet
eliminated any existing edge in the graph to maintain the
k-neighbor relationship among all nodes.

Solution II: Online Co-Localization
We will extend the aboveTwo-Phase Co-Localizationmodel
to anonlineversion. We wish that it can dynamically adjust
itself when new data come sequentially in real-time. The key
point is how to add the new data into the learned graph by
updating thek-neighbor relationship and the corresponding
weight matrixW . This can be done repeatedly in two online
steps: Predict and Update.

Predict Given a new signal vectorsi at timeti, we find its
k nearest neighbors and use Equation (6) in the aboveonline
localization phasefor predicting the locatioñri.

Update The addition and deletion of nodes can modify the
neighborhood graph and the corresponding graph Laplacian.
We use the method described in (Law & Jain 2006) for up-
dating the neighborhood graph structure locally.
•Node Addition Let A+

i andD+

i be the set of edges to be
added and deleted after insertingvi to the neighborhood
graph, respectively. Letτi be the index of thekth nearest
neighbor ofvi. So,vj is in thek nearest neighborhood ofvi

if ∆ij ≤ ∆i,τi
. When∆i,τi

> ∆i,τi
, vn+1 replacesvτi

in
the knn neighborhood ofvi. It is easy to see that:

A+

i = {e(j, n + 1) : j ∈ Ci or ∆j,τj
> ∆ji}

D+

i = {e(j, τj) : ∆j,τj
> ∆j,i and ∆τj ,j > ∆τj,lj}

whereli is the index of thekth nearest neighbor
of vτj

after insertingvi in the graph.

•Node DeletionSimilarly, letA−

i andD−

i denote the set of
edges to be added and deleted after removingvi from the
neighborhood graph, respectively. The graph update can be
done as follows:

A−

i = {e(i, hi)} wherehi is the(k + 1)th nearest
neighbor before removingvi in the graph.

D−

i = {e(i, j) : j ∈ Ci}

After updating the neighborhood graph, it is straight-
forward to modify the corresponding weight matrixW . For
an added edgee(i, j), we set both the values ofwij and
wji because the neighborhood graph is symmetric. If it is a

deleted edge, we clear the values ofwij andwji. The graph
LaplacianL = D −W can be updated in a similar way.

Finally, we have to re-estimate the location matrixR =
[P ′Q′]′ of the mobile devices and the access points so that
it can reflect the change of the neighborhood graph and the
new graph LaplacianL. Instead of using Equation (5) for
solvingR, we updateR by iteration. In each iteration cycle,
we apply:

rnew
i ←

∑

j∈Ci∪Bi
wijr

old
j

∑

j∈Ci∪Bi
wij

(i = 1, 2, . . . , m + n) (7)

We use the predicted̃ri (i = 1, . . . , m + n) as the initial
values for iteration. Furthermore, the weight matrixW does
vary too much after addition or deletion. We can obtain very
good estimation after a few iterations.

Example 2 A user with a mobile device walks in the of-
fice area shown in Figure 1. The mobile device periodically
collects signal vectors. The user can mark down his location
when he walks by some landmark points such as corners and
dead-ends of the hallways (A, B, . . . , F ). Thus, the data that
come in stream are partiallylabeled. By applying theonline
co-localizationmethod, we continuously update the recov-
ered locations of the mobile devices and the access points.
Figure 2 shows theonline co-localizaitonresults at six key
frames when the user walks byA, B, . . . , F . As can be seen,
the locations of the user trajectory and the access points are
dynamically calibrated when obtaining new data. For exam-
ple,AP3 gradually converges to its true location.

Experiments
Accuracy and Calibration Effort
We evaluated the performance of theco-localizationalgo-
rithm in an 802.11 WLAN as shown in Figure 1. A person
carried an IBM T42 laptop which is equipped with an Intel
Pro/2200GB internal wireless card and walked in the envi-
ronment. A total of 2000 examples are collected sequen-
tially with sample rate2Hz. The ground-truth location la-
bels are obtained by referring to landmark points such as
doors, corners and dead-ends.

For comparison, we also run the following baseline al-
gorithms (1) LANDMARC, a nearest-neighbor weighting
based method (Niet al. 2003); (2) Support Vector Regres-
sion (SVR), a simplified variant of a kernel-based method
(Nguyen, Jordan, & Sinopoli 2005); (3) RADAR, a K-
Nearest-Neighbor method (Bahl & Padmanabhan 2000).

In each experiment, we randomly pick up a sequence of
500 examples for training and the rest for testing. The train-
ing data are further split intolabeledandunlabeledparts.
The results shown in Figure 3 are averaged over 10 rep-
etitions for reducing statistical variability. LANDMARC,
RADAR and SVR use thelabeledpart of training data only.
In contrary, theonline co-localizationmethod uses bothla-
beled and unlabeleddata. Figure 3(a) plots the cumula-
tive probability with respect to error distance. As can be
seen, the proposedonline co-localizationbenefits from the
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Figure 2: Illustration of the Online Co-Localization when auser walks fromA throughB, . . . , D to F

additionalunlabeleddata and increases the accuracy. Fig-
ure 3(b) and 3(c) show the localization error of the mobile
device and access points by varying the number of labeled
examples in a training subset which size is fixed to 500.
Again, the proposed method performs relatively better than
the baselines. By employing theunlabeleddata, we save the
calibration effort.

Speed Test
We compare the speed of Two-Phaseco-localizationmethod
and theonlineversion. Suppose that data come one by one
sequentially. Once we get a new signal vector, the Two-
Phase method adds it as a training example and rebuilds
the whole model. In comparison,Online co-localizationup-
dates the estimation incrementally. Figure 4 shows the aver-
age running time for adding a new vector. The test is done in
Matlab on a computer that has a 2.0GHz CPU. Experimen-
tal results show that we can greatly reduce the time for the
model adaption in an online manner. For example, when the
training dataset size is incrementally enlarged to about500,
the Two-Phase method needs1.2s to re-estimate everything
while the online method spends no more than0.1s. Theon-
line method is more than ten times faster.

Conclusion and Future Works
We have developed a manifold-based online and incremen-
tal approach to solve the problem of recovering the locations
of both mobile devices and access points from radio signals
that come in a stream manner. In ouronline co-localization
framework, we exploit both labeled and unlabeled data from
mobile devices and access pointsonlinewhen data come in
stream. Experiments conducted in an 802.11 WLAN show
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Figure 4: Average Running Time Comparison

that we can achieve high accuracy with less calibration ef-
fort as compared to several previous systems. Furthermore,
our method can deal with data streamonlinerelatively faster
while compared to its Two-Phase counterpart. In the future,
we would continue to study the environment in which access
points may be removed, relocated and added for better cov-
erage and link quality and how the algorithm can adapt the
change dynamically.
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